top of page


Attrezzature per la riduzione delle acque reflue

electrodialysis equipment yasa et


L' attrezzatura intelligente per il riciclo delle acque PREDEST è stata sviluppata da Yasa.

Adotta il concetto di design "ricicla prima, tratta dopo", che può ridurre notevolmente i costi di investimento e operativi, eliminando allo stesso tempo i problemi di smaltimento delle acque reflue.


The Electrodialysis process utilizes an electrodialysis stack assembled on the filter press principle.


On a industrial scale, the electrodialysis stack consists of 100–400 alternate cationic and anionic membranes assembled in pairs (repeating units) between two electrodes; the aqueous feed solution flows through the cells between each pair of membranes as shown in the drawing below.


When an electrical potential difference is applied between the two electrodes, positively charged cations in the feed solution move toward the cathode. These ions easily pass through the negatively charged cation exchange membranes, but are retained by the positively charged anion exchange membranes. Similarly, negatively charged anions migrate towards the anode, pass through the anion exchange membrane and are retained by the cation exchange membrane.


Because of the arrangement of ion-selective membranes, the migrating ions become concentrated in each alternate cell in the stack. Thus, ions removed from the aqueous feed solution are concentrated into two separate streams.

Electrodialysis Membrane Stack Principle Drawing



In application, electrodialysis systems can be operated as continuous production or batch production processes. In a continuous process, feed is passed through a sufficient number of stacks placed in series to produce the final desired product quality. In batch processes, the diluate and/or concentrate streams are re-circulated through the electrodialysis systems until the final product or concentrate quality is achieved.

Electrodialysis is usually applied to deionization of aqueous solutions. However, desalting of sparingly conductive aqueous organic and organic solutions is also possible.


Some applications of electrodialysis include:

  • Large scale brackish and seawater desalination 

  • Small and medium scale drinking water production (e.g., towns & villages, construction & military camps, nitrate reduction, hotels & hospitals)

  • Water reuse (e.g., desalination brine treatment, industrial laundry wastewater, produced water from oil/gas production, cooling tower makeup & blowdown, metals industry fluids, wash-rack water)

  • Pre-demineralization (e.g., boiler makeup & pretreatment, ultrapure water pretreatment, process water desalination, power generation, semiconductor, chemical manufacturing, food and beverage)

  • Food processing

  • Agricultural water (e.g., water for greenhouses, hydroponics, irrigation, livestock)

  • Glycol desalting (e.g., antifreeze / engine-coolants, capacitor electrolyte fluids, oil and gas dehydration, conditioning and processing solutions, industrial heat transfer fluids, secondary coolants from heating, venting, and air conditioning (HVAC))

  • Glycerin purification

electrodialysis ed equipment tds reduction over time graph
TDS Reduction

The major application of electrodialysis has historically been the desalination of brackish water or seawater as an alternative to RO for potable water production and seawater concentration for salt production.


In normal potable water production without the requirement of high recoveries, reverse osmosis is generally believed to be more cost-effective when total dissolved solids (TDS) are 3,000 parts per million (ppm) or greater, while electrodialysis is more cost-effective for TDS feed concentrations less than 3,000 ppm or when high recoveries of the feed are required.

Another important application for electrodialysis ion exchange membranes is the production of pure water and ultrapure water by electrodeionization (EDI). In EDI, the purifying compartments and sometimes the concentrating compartments of the electrodialysis stack are filled with ion-exchange resin. When fed with low TDS feed, the product can reach very high purity levels. The ion-exchange resins act to retain the ions, allowing these to be transported across the ion-exchange membranes.


YASA ET has installed and managed Electrodialysis Systems for many clients. If you need more information about our systems kindly get in touch with our team.

Get In Touch

Esplora altre soluzioni di trattamento delle acque reflue offerte da YASA ET

Evaporatore serie EVADEST


Serie di cristallizzatori PIÙ SOLIDI

REWATER Serie Membrane

Accessori e monouso per il trattamento delle acque reflue

bottom of page